

Equipment Or Service (855) 787-4200 info@complete-water.com

ECO – Series Reverse Osmosis Systems

ECO – Series Reverse Osmosis Systems are state–of–the–art, versatile systems for treating tap and well water supplies with flow rates ranging from 2,000 to 8,000 gallons per day with minimal energy consumption and low maintenance and operation costs.

ECO – Series Reverse Osmosis Systems feature a robust, innovative design that allows for versatility in the event of feed water quality and temperature variations. Standard features include a composite solenoid valve, low pressure switch, and a stainless steel booster pump for high performance and corrosion resistance.

ECO - 8000 Reverse Osmosis System

Features

- C 26 Controller
- Ultra Low Energy Membrane Elements
- Fiberglass Membrane Housings
- 4.5" x 20" Pre–Filter Housing
- 5 Micron Sediment Filter
- Multi-Stage Stainless Steel
 Centrifugal Pump

- Motor Thermal Overload Protection
- Pump Operating Pressure Gauge
- Pre–Filter In Pressure Gauge
- Pre-Filter Out Pressure Gauge
- Permeate Flow Meter
- Stainless Steel Concentrate Flow Meter with Integrated Needle Valve
- Stainless Steel Recycle Flow Meter with Integrated Needle Valve
- Feed Low Pressure Switch
- Composite Solenoid Valve
- DM2 Dual TDS Meter

ECO – Series Reverse Osmosis Systems

Product Specifications						
Models	ECO - 2000	ECO - 4000	ECO - 6000	ECO - 8000		
Design						
Configuration	Single Pass	Single Pass	Single Pass	Single Pass		
Feedwater Source [†]	TDS <2000	TDS <2000	TDS <2000	TDS <2000		
Standard Recovery Rate	Up to 60%	Up to 75%	Up to 75%	Up to 75%		
Rejection and Flow Rates ^{†††}						
Nominal Salt Rejection	98.5%	98.5%	98.5%	98.5%		
Permeate Flow	1.39 gpm	2.78 gpm	4.17 gpm	5.56 gpm		
Minimum Concentrate Flow	3.00 gpm	3.00 gpm	3.00 gpm	3.00 gpm		
Concentrate Recycle Flow	Up to 2.00 gpm	Up to 5.00 gpm	Up to 5.00 gpm	Up to 5.00 gpm		
Connections						
Feed Connection	3/4" FNPT	3/4" FNPT	3/4" FNPT	3/4" FNPT		
Permeate Connection	1/2" QC	1/2" QC	1/2" QC	1/2" QC		
Concentrate Connection	1/2" QC	1/2" QC	1/2" QC	1/2" QC		
Membranes						
Membrane Per Vessel	1	1	1	1		
Membrane Quantity	1	1	3	4		
Membrane Size	4040	4040	4040	4040		
Vessels						
Vessel Array	1	1:1	1:1:1	1:1:1:1		
Vessel Quantity	1	2	3	4		
Pumps						
Pump Type	Multi-Stage	Multi-Stage	Multi–Stage	Multi–Stage		
Motor HP	1/2 – 3/4	1/2 – 3/4	1 – 1 1/2	1 – 1 1/2		
RPM @ 60 Hz	3450	3450	3450	3450		
System Electrical						
Controller	C – 26	C – 26	C – 26	C – 26		
Standard Voltage + Amp Draw	110V 1PH 60Hz 13.4A**	110V 1PH 60Hz 13.4A**	220V 1PH 60Hz 10.94**	220V 1PH 60Hz 10.94*		
Systems Dimensions						
Approximate Dimensions* L x W x H	27" x 30" x 56"	27" x 30" x 56"	27" x 30" x 56"	27" x 30" x 56"		
Approximate Weight	130 lbs.	140 lbs.	155 lbs.	180 lbs.		

Warranty Evaluation Test Conditions: Permeate flow rates and salt rejection based on the following test conditions – 550 ppm, filtered and dechlorinated municipal tap water, 77°F / 25°C, 15% recovery, 7.0 pH and the specified operating pressure for membrane element type. Data taken after 60 minutes of operation.

Operating Limits^{††}

Design Temperature	77°F	Maximum Free Chlorine (ppm)	0
Maximum Feed Temperature	85°F	Maximum TDS (ppm)	2,000
Minimum Feed Temperature	40°F	Maximum Hardness (gpg)	<1
Maximum Ambient Temperature	120°F	Maximum pH (Continuous)	11
Minimum Ambient Temperature	40°F	Minimum pH (Continuous)	2
Maximum Feed Pressure psi	85	Maximum pH (Cleaning 30 Minutes)	13
Minimum Feed Pressure psi	45	Minimum pH (Cleaning 30 Minutes)	1
Maximum Operating Pressure psi	200	Maximum Turbidity NTU	1
Maximum SDI Rating	<3		

[†] Low temperatures and feedwater quality, such as high TDS levels will significantly affect the systems production capabilities and performance. Computer projections must be run for individual applications which do not meet or exceed minimum and maximum operating limits for such conditions.

^{†††} Product flow and maximum recovery rates are based on feedwater conditions as stated above. Do not exceed recommended permeate flow.

Equipment Or Service (855) 787-4200 info@complete-water.com

^{*} Does not include operating space requirements.

^{**} Varies with motor manufacturer.

^{††} System pressure is variable due to water conditions. Permeate flow will increase at a higher temperature and will decrease at a lower temperature.